Ozone data and Model output
combined using Kriging with External Drift.

H. Wackernagel1, C. Lajaunie1, C. Roth2, N. Blond3,
R. Vautard3

\url{http://cg.ensmp.fr/~hans}

1CG Ecole des Mines de Paris, 2Airparif, 3LMD Ecole Polytechnique

IMPACT Project

\url{http://www.mai.liu.se/impact}
Normalization of Model output with Station data

In many environmental applications:

- measurements at points of a region,
- gridded data covering the region.

Example: ground samples and remote sensing data.

This talk:

- combining **station data** and **model output**
 \rightarrow multivariate geostatistics
- change of support problem
 between station data and model output
Multivariate Kriging

Kriging is a special type of optimal linear prediction applied to random functions in space or time with the particular requirement that their covariance structure should be known. → Cokriging
Multivariate Kriging

Kriging is a special type of optimal linear prediction applied to random functions in space or time with the particular requirement that their covariance structure should be known. → Cokriging

Covariance structure: variograms (or covariance functions) for a set of variables.
Multivariate Kriging

Kriging is a special type of optimal linear prediction applied to random functions in space or time with the particular requirement that their covariance structure should be known. \(\rightarrow \) Cokriging

Covariance structure: variograms (or covariance functions) for a set of variables.

Drift: translation-invariant polynomial drift, or external drift.
Data: Configuration & Neighborhood

Data configuration:
 sites of different types of measurements
 in a spatial/temporal domain.
Data: Configuration & Neighborhood

Data configuration:
sites of different types of measurements
in a spatial/temporal domain.

Neighborhood:
a subset of data used in cokriging.
Configurations: Iso- and Heterotopic Data

- **Primary data**
- **Secondary data**

Isotopic data
- Sample sites are shared

Heterotopic data
- Sample sites may be different

Dense auxiliary data
- Secondary data covers whole domain
Kriging with external drift

Estimator: \[Z^*(x_0) = \sum_{\alpha=1}^{n} w_{\alpha} Z(x_{\alpha}) \]

- constrained weights: \[\sum w_{\alpha} = 1 \]
- auxiliary variable \(s(x) \) put as a constraint:
 \[\sum_{\alpha} w_{\alpha} s(x_{\alpha}) = s(x_0) \]
- dense auxiliary data,
- linear relation with primary variable.
Configuration: dense auxiliary data

A: neighborhood using all data
B: multi-collocated neighborhood
C: collocated neighborhood
Neighborhood: multi-collocated

- all forms of cokriging: simple, ordinary, universal
- multi-collocated cokriging equivalent to full cokriging when proportionality in the cross-covariance model.

External drift: uses a multi-collocated neighborhood.
Neighborhood: multi-collocated

Cokriging with all data is equivalent to cokriging with multi-collocated neighborhood when (Rivoirard 2000):

\[C_Z(h) = p^2 C(h) + C_R(h) \]
\[C'_S(h) = C(h) \]
\[C'_{ZS}(h) = p \, C(h) \]

where \(p \) is a proportionality coefficient, \(C_R(h) \) is the covariance of the residual, i.e. the difference between \(Z(x) \) and \(S(x) \).

- \(C_S(h) \) more regular than \(C_Z(h) \), if \(C_R(h) \) less regular than \(C(h) \),
- \(S \) is smoother than \(Z \).
CASE STUDY: Ozone in Paris area

- Ozone hourly values from 19 AirParif stations
- CHIMERE model output (LMD/IPSL):
 - simplified chemistry transport, forced by ECMWF weather forecasts (80 gaseous substances, 200 processes)
 - 50×50 Km2 large scale resolution with 6×6 Km2 subgrid in 150×150 km2 square (Ile-de-France)

We compare two pollution events on 29 and 17 July 1999.
Ozone values at 19 AirParif Stations
CHIMERE model: 29 July ’99, 15h UT

Ozone: Ile de France (29 July ’99, 15h UTC)

Scale of pollution: continental plume
Variogram of Ozone on 29 July ’99 at 15h UT

LEFT: Map of highlighted pairs of stations

RIGHT: Variogram cloud
Variogram of RESIDUALS

RESIDUALS: AirParif Stations minus CHIMERE Model

Variogram cloud (+) and experimental variogram (—)

Interpretation: white noise, i.e. nugget effect model
Kriging with external drift: 29 July ’99 at 15h

KED model: no autocorrelation between residuals
The CHIMERE model is linearly transformed by KED: amounts mainly to adding a constant!
Ozone: Ile de France (17 July ’99, 15h UTC)

Scale of pollution: local plume (i.e. within domain)
Variogram of Ozone on 17 July ’99 at 15h UT

LEFT: Map of highlighted pairs of stations

RIGHT: Variogram cloud
Variogram of RESIDUALS

Variogram cloud (+) and experimental variogram (—)

Interpretation: autocorrelated residuals
Spherical or Cubic variogram model?

LEFT Model: 285 spherical(h, range=.4) + 10 nugget(h)
RIGHT Model: 273 cubic(h, range=.33)
Kriging with external drift: 17 July ’99 at 15h

LEFT: Spherical + Nugget variogram model

RIGHT: Cubic variogram model
KED model: autocorrelated residuals

→ deformation of CHIMERE surface.
KED vs CHIMERE

KED

CHIMERE model

Kriging with Ext. Drift

r = 0.94

TIES 2002/Genova p.23/37
AirParif Stations vs CHIMERE

AirParif Stations

CHIMERE model

Kriging with Ext. Drift

CHIMERE model

r = 0.83

r = 0.94
External drift and Change of Support

Basic unsolved question

The measurements from stations and the numerical model output are not on the same support:

- model output on 6×6 km2 cells,
- measurements on a smaller support (which size?).

The variability of cell values should be lower than that of point values:

\rightarrow change-of-support problem?
CASE STUDY: Geostatistical simulation of O_3

Simulation of the exponential of a Gaussian variable

Region $600 \times 800 \text{ Km}^2$

Cells $1 \times 1 \text{ Km}^2$

Variogram with a range of 50 Km
Simulation of Ozone: 1 × 1 Km² support

Km

Km

O3: 1x1km2

>=96
90
84
78
72
66
60
54
48
42
36
30
24
18
12
6
<0

ug/m³

TIES 2002/Genova p.27/37
Simulation of Ozone: 10×10 Km2 support
Simulation of Ozone: $20 \times 20 \text{ Km}^2$ support
Simulation of Ozone

Increasing the support: the means are equal, but the extremes and the variance are reduced.
Simulation of Ozone

Increasing the support:
the range increases
Simulation of Ozone

black = 1x1Km
blue = 10x10Km
red = 20x20Km
Simulation of Ozone

![Graph showing the proportion of area above a certain O3 cutoff in different areas.]

- Black line: 1x1Km²
- Blue line: 10x10Km²
- Red line: 20x20Km²

Proportion above cutoff (%) vs. O3 cutoff (ug/m³)
CASE STUDY: Ozone in Paris area

What about the support effect for KED and CHIMERE?
In this example, at least, KED does not alter the distribution of the CHIMERE model except for a shift in the mean.
CONCLUSION

Kriging with External Drift (KED) is a simple method for normalizing model output with station data.
CONCLUSION

- Kriging with External Drift (KED) is a simple method for normalizing model output with station data.

- In our example:
CONCLUSION

- Kriging with External Drift (KED) is a simple method for normalizing model output with station data.

- In our example:
 - KED recalibrates the mean of the model output,
CONCLUSION

- Kriging with External Drift (KED) is a simple method for normalizing model output with station data.

- In our example:
 - KED recalibrates the mean of the model output,
 - the shape of the histogram is preserved: no support effect for the normalized model output.
References

Selected references

Air pollution case study
http://cg.ensmp.fr/~hans/projects.html

Ebro estuary case study