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ABSTRACT

We use the Sampson and Guttorp approach to model the non-stationary correlation
function r(x,z') of a Gaussian spatial process through a bijective space deformation,
f, so that in the deformed space the spatial correlation function can be considered
isotropic, namely r(x,z") = p(|f(z) — f(z")| , where p belongs to a known parametric
family. Given the locations in the deformed space of a number of geographic sites
at which data are available, we smoothly extrapolate the deformation to the whole
region of interest. Using a Bayesian framework, we estimate jointly these locations,
as well as the parameters of the correlation function and the variance parameters.
The advantage of our Bayesian approach is that it allows us to obtain measures
of uncertainty of all these parameters. As the parameter space is of a very high
dimension, we implement an MCMC method for obtaining samples from the posterior
distributions of interest. We demonstrate our method through a simulation study,
and show an application to a real data set.

Keywords: Thin-plate splines, Markov Chain Monte Carlo, Gaussian spa-
tial processes.
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1 Introduction

The estimation of heterogeneous spatial covariance is an important problem in en-
vironmetrics and geostatistics. A general, semi-parametric approach to this, based
on repeated observations from a network of monitoring stations, was introduced by
Sampson and Guttorp (1992) and developed further in a sequence of papers (Guttorp
and Sampson, 1994; Meiring et al., 1996, 1998; Perrin and Meiring, 1999). One of the
advantages with the Sampson-Guttorp approach is that it enables estimation of the
covariance between spatial locations where no observations have been made, without
relying on an assumption of homogeneity or stationarity of the underlying space-time
random field. A weakness of the current methodology is its reliance on somewhat
ad hoc computationally demanding approaches to estimating the variability of such
estimates (Monestiez et al., 1993, 1998).

In the last decade, Bayesian methods have become increasingly popular as an al-
ternative to classical ones in analyses of spatio-temporal data. The traditional method
of spatial prediction or interpolation (kriging) assumes knowledge of the parameters
of the underlying covariance structure, whereas the Bayesian paradigm incorporates
uncertainty in these parameters in predictions. Two main approaches have developed
in this context. The first one may be viewed as a direct extension of the traditional
kriging. For example, Le and Zidek (1992) propose a fully parametric Gaussian lin-
ear model (for a finite number of spatial locations of interest) and Handcock and
Stein (1993) use prior distributions for parameters in a wide class of second-order
stationary spatial models. The second approach, particularly relevant when temporal
correlation as well as spatial correlation must be addressed, is a dynamic one, which
makes use of Kalman filter techniques to model the mean of the space-time process
recursively. Wikle et al. (1998) develop this method for data on a space-time grid.

In this paper we develop a Bayesian approach to estimating heterogeneous spatial
covariance utilizing Markov chain Monte Carlo technology. Among the benefits of
this approach are natural estimates of uncertainty for all different aspects of the
estimation process, including spatial estimation in the context of either of the two
general approaches noted above.
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2 General Framework

2.1 The Model

We do not address here issues of temporal correlation and assume that temporally in-
dependent samples Z;; = Z(x;,t) from a spatio-temporal process are available at each
of N geographic locations and at the same 7" pointsin time¢ =1,2,..., N;t =1,2,....T.
We consider the following model for the underlying process:

Z(x,t) = p(x,t) + v(z)2E, (z) + E(z, ) (1)

where = denotes location and ¢ time. u(z,t) represents the spatio-temporal (deter-
ministic) mean field. E,(x) is a zero mean, variance one, Gaussian spatial process
with a correlation function that depends smoothly on the geographic coordinates.
We assume that E,(z) is second-order continuous, i.e., Cov(E,(x), E;(y)) — 1, as
x — y. v(z) is a smooth function representing the variance (in time) of the process
observed at location z. E.(z,t) represents measurement error and small-scale spatial
variability. The distribution of E, is assumed to be independent of location and time,
as well as of the process E..
Throughout this paper, we will assume that u(z,t) = p(x) is constant in time.
We focus our attention on modeling the covariance part of (1):
_ | w@(y)2Corr(E:(2), E-(y)) = #y
Cov(Z(x,t), Z(y,t)) = { o(y) + o2 v =y (2)
Following Sampson and Guttorp (1992), we model the non-stationary spatial cor-

relation function of E, as a function of Euclidean distances between site locations in
a bijective transformation of the geographic coordinate system:

Corr(E-(z), Ex(y)) = po(|f(x) = f(y)]) 3)

Here, py is a correlation function of a known parametric form (with unknown
parameter(s) 6), and f is an unknown function assumed smooth and bijective.

The interpretation of this semi-parametric model is that the correlation structure
is isotropic after an appropriate change in the coordinate system. Here (and in all of
our applications to date) we assume that it suffices to take f as a mapping from a
two-dimensional geographic system (R?) into another 2D coordinate system (R?). In
general, modeling may require mapping R? into RF, 2 <k < N.
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We note that in Sampson and Guttorp (1992) the model is formulated in terms of
the dispersion function, D(E,(z), E;(y)) = Var(E,(z) — E;(y)). This function may
exist when the spatial correlation function does not. However, this does not happen
in our case, where the variance of E, is finite (it is equal to 1 by construction). As
in Sampson and Guttorp (1992), we will refer to the geographic coordinate system
as the G—space, and to the deformation of the coordinate system given by f as the
D—space.

Perrin and Meiring (1999) prove that when p is strictly decreasing or when p, f
and the inverse of f are all differentiable, the model defined in (3) is identifiable, in the
sense that p is unique up to a scaling factor and f is unique up to homothetic trans-
formations (i.e., translations, rotations, reflections about a line or compositions of
those). These assumptions, however, do not ensure identifiability for a finite network
of monitoring sites.

2.2 A Bayesian Framework

Our purpose is to estimate, based on the data Z;;, the transformation f, the spatial
variance v and the parameters of the correlation function p, the form of which must be
specified in advance. These underly the matrix of true spatial covariances evaluated
at the IV sites, which can be expressed as:

2= E(e?yiaé-i;i = 1,2, ,N) = (Oij);

where

oi; = (vv;) P po(|& — &1)

and & = f(x;) are the coordinates of site 7 in the D—space representation, 6 is the
vector of parameters for the class of correlation models under study, v; is the variance
of the spatial field at site 7. In this Bayesian framework, we estimate first the param-
eters of ¥. After estimating the &;, f can be estimated by smooth interpolation of the
finite mapping x; — &;. In principle, any smooth interpolator may be considered. We
use the thin-plate spline (Bookstein, 1991) interpolator because it provides a useful
framework for specifying a prior distribution on the coordinate locations &;. The pre-
vailing method (e.g., Meiring et al., 1997) estimates the parameters by a penalized
least squares method. In order to assess their variability, a computationally intensive
bootstrap approach has been used. In the Bayesian framework, the variability of the
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estimates is reflected in their posterior distribution. The dimension of this distribu-
tion is proportional to N, the number of geographic locations, and there is no feasible
way to evaluate the multi-dimensional integral underlying its density. To avoid this,
we follow the common approach of generating samples from the posterior distribution
using an MCMC algorithm.

3 Estimation

3.1 The Likelihood

The multivariate normal density of the observations can be expressed in terms of
the vector of site means, z, and the sample covariance matrix S, (Sij = S0 (zi —
Zi.)(zjt — Z;.)), (which is nonsingular only if 7" > N):

T

P | 1) = 282 exp {2 im0 = (2 = )5 2 = )}

Setting i = Z (the mean estimate under a non-informative prior), the likelihood
simplifies to:

T
P(S | %) =278 T D/ 2exp {—gtrE_lS}.

We will base inferences on this likelihood.

3.2 Prior Distributions

Our framework requires that we compute a mapping f (with the constraints f(z;) =
&;) that is a bijective transformation over the geographic domain of interest. As we
compute the mapping using thin-plate splines, there is no guarantee that the result
will not “fold” (i.e. that the result will indeed be bijective). Since the folding cannot
be assessed analytically, we cannot assign zero prior probability to configurations that
result in folding. Instead, we use a prior distribution that is natural for thin-plate
spline mappings and which penalizes non-smooth (bending) maps, including those
that fold. (This prior was suggested by Mardia, Kent and Walder (1991)).

In the calculation of a thin-plate spline, the bending energy of the spline—reflecting
deviation from an affine transformation—can be expressed as a quadratic form in
the image coordinates. The bending energy matrix underlying this quadratic form
is a function only of the geographic coordinates. Call this matrix K = K(z;,i =
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1,2,...,N). K arises naturally in a kriging system with spatial covariance structure
of the form o(d) = |d|*1log(|d|?). For further reference see Bookstein (1989), Book-
stein (1991), Sampson et al. (1991), or Mardia et al. (1991). Let & = (&1, &)
denote two-dimensional locations, and let & = (£11,...,én1)T, €2 = (E12,---,En2)T
and = = [€; &€2]. Then, the bending energy is proportional to

&1 K& + &' K&

We specify a prior on the spatial configuration = as a normal distribution based on
the bending energy:

7(2) = PUED) o exp{— - (6aTKEs + &:TKE)).

272

It should be noted that this density is improper because the matrix K is of rank N — 3.
This density is flat over the space of {;} that can be obtained from the {z;} via affine
transformations. By specifying the scale parameter 7 we determine how much the
prior (relative to the likelihood) will penalize mappings with high bending energy—
the mappings most likely to result in folding. The prior on the other covariance
parameters, v; and 6, will depend on the covariance structure thought to be feasible
for the data under study. We will assign priors for § and v; independently of =; so
that the joint prior, which we will denote by 7 (%), is:

(X)) =7(0,v,i=1,2,...,N)n(Z).
The posterior to be maximized is:

7(2]S) x P(S|T) 7(%). (4)

3.3 The MCMC Algorithm

The algorithm implemented here is a Metropolis-Hastings type one (e.g., Gelman et
al. (1996)). It alternates between sampling of new geographic configurations and new
values for the other covariance parameters. The geographic configuration is sampled
using a multivariate normal kernel (in a Metropolis step); vectors of the = and y
coordinates are sampled independently, so that the proposed new configuration is not
restricted to any particular direction in the plane. We have found it useful though,
in order to avoid proposals of high bending energy and to increase acceptance rates,
to restrict points close together in the initial configuration to “move together”. This



January 25, 2000 7

has been obtained by imposing a spatial structure in the covariance matrix of the
multivariate kernel, which decreases with geographic distance. The other covariance
parameters are sampled from kernel distributions that are not necessarily symmetric
(in Metropolis-Hastings steps) about current values.

Schematically, we let the algorithm start with some initial values of the parameters
v; and 0, and with an initial configuration Z° equal to the geographic configuration
of the sites. At the m" iteration, the current parameters are denoted § = #(m—1),
v = pm=1) 5m=1) = [¢m=1) em=1 reshectively. Then,

e 0* and v* are sampled from a proposal distribution: Q(6*,v* |91 p(m=1),

e p; is calculated:

n(£(67, 1", D) [ $)QO™ D, wim D |6, 1)
(SO p(m=1) £m=1)) | §)Q(f*, v* |§(m—1) py(m-1))

p1 =

e A and v(™) are set:

(m) (m)y _ (0%, v*) with probability min(p;, 1)
(67, ) {(9(’”_1),1/("’_1)) otherwise

e A new configuration, =* = [£;" €27], is sampled by combining &;* ~ MVN({l(m’l), B)
with &2* ~ MVN(§2(m*1), B). As explained above, the elements of the matrix
B are decreasing functions of the geographic distances.

e py is calculated:

(S0, ™) =%) | S)
(X0, p(m) =(m-1)) | §)°

D2 =

o =M ig set:

=

—m)_ | Z with probability min(ps, 1)
= 7] 21 otherwise
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These steps are repeated until the chain is judged to have converged. Thereafter,
samples from the posterior distributions can be obtained. We assess the convergence
of the chain both by examining the behavior of the log(posterior), and by monitoring
changes in the ratio of between to within chains variability (as expressed by the
Gelman and Rubin R statistic, which should be close to one at convergence (Gelman
et al., 1996)), when running the chain with several different starting configurations.

4 Simulation

Model (1) accommodates heterogeneity in the variance of the spatial process, v(z),
as well as the spatial correlation structure. In this first simulation we have tested the
performance of the MCMC algorithm in a simpler case, in which the spatial variance
is constant (v(x) = v), and the covariance structure is anisotropic but stationary. We
also assume that there is no small-scale spatial variability (E.(z,t) = 0).

At each of N = 10 monitoring sites, z1, ..., zx, 7" = 400 independent observations
(21, -.-2}p) were sampled, zf; ~ N(0,1). The bijective transformation f for a sta-
tionary, anisotropic correlation structure is affine and specified by a 2 x 2 matrix, A.
The form of the correlation model is exponential:

0ij = vexp(=0 |A(z;) — A(z;)])- (5)

We set the parameters v = 1 and # = 0.003. Figure 1 shows the true and the
deformed configurations (the G and the D planes), and a biorthogonal grid for the
affine transformation. The idea behind biorthogonal grids (see Sampson et al. (1991))
is that a smooth transformation has at any point a locally linear approximation, given
by the matrix of its partial first derivatives at the point, A. The eigenvectors of
ATA are called principal axes. The direction of the axis corresponding to its largest
eigenvalue is the direction in which the plane is (locally) most stretched — this is the
direction of the weakest spatial correlation. The strength of the (local) stretching is
given by the square roots of the eigenvalues of AT A (referred to as gradients, “grad”,
in our figures). In the case of an affine transformation, the linear approximation is of
course exact. The square roots of the eigenvalues of AT A are 2.3 and 0.9.

For both v and 6 we use exponential prior distributions with parameter 1, mutually
independent and independent of the prior distribution for the &;. These have been
chosen purely for convenience and, as shown in figure 2, have little influence on the
posterior distributions. The proposal distribution for v* is I'(40, v/40) and for 6* —
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I'(30,60/30). (The parameters of the two Gamma distributions were chosen in order
to provide MCMC acceptance rates of about 20%).

The form of the prior distribution of the &; has been discussed in section 3.2. In
this example, we set the scale parameter 7 = 1. We intend to investigate the influence
of this parameter on the prior distribution in future work. As explained in section
3.3, &1" and &2 are sampled independently from multivariate normal distributions
with parameters (£1, B) and €2, B) respectively. The components of the covariance
matrix, B, decrease exponentially with the (geographic) distance between sites (b;; =
vexp(—t|z; — z;|). We have used here v = 4 and ¢ = 0.02 in order to ensure that
about 30% of the proposed configurations will be accepted. The first two rows of B
have been set to 0, so that two points are held fixed.

The distribution of the log(posterior) seems to stabilize after the first 5,000 iter-
ations. The maximum square-root of R when running the chain with five different
starting configurations decreases from 3.0 in 5,000 to 1.17 in 25,000 iterations. We
have therefore decided to discard the first 50,000 iterations. Thereafter, samples of
length 500 from the posterior distributions of v, § and £ were obtained, by sampling
every 100" iteration. We thus estimate the spatial configuration, &, by the mean
of 500 sampled configurations. v and # are estimated similarly by the means of the
500 sampled parameters . The estimated v is 0.996 (95%C.I. = (0.926,1.069)), and
the estimated 6 is 0.0029 (95%C.I. = (0.0025,0.0033)). (C.I. = Credibility Interval).
Figure 2 shows histograms of the empirical posterior distributions of v and 6. The
plots in figure 3 show the estimated transformation and its biorthogonal grid; these
clearly resemble very much those in figure 1. The sample covariances as functions
of the distance in the GG, the D and the estimated D planes are shown in figure 4
— their variability clearly decreases in the D plane (the true as well as the estimated
one). We have superimposed on these plots the true and the estimated covariance
functions.

One way of depicting the uncertainty in the estimated transformation is by plot-
ting the principal axes of the 500 sampled transformations at given points. In figure
5 we have superimposed the 500 pairs of principal axes at monitoring site 3. From
this figure, it can be seen that the transformation in the vicinity of the point is
satisfactorily stable.

We can also assess the variance and the bias of the estimated covariances, both
among monitoring sites and between locations at which there are no observations.
The box-plots in figure 6 summarize the estimated 500 covariances between site 3 and
other locations and between location (0,0) (at which no observations are available)
and other locations. The inter-quartile ranges are small (about 0.1), and the true
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covariances are quite close to the estimated ones, as expected.

5 Application

We have compared our Bayesian estimation approach to the penalized least squares
estimation, by applying it to the French precipitation data described in Meiring et
al. (1997). The 108 altitude-adjusted 10-day aggregated precipitation records for
39 sites in the Languedoc-Roussillon region have been first log-transformed and the
site-specific means have been removed. Unlike Meiring et al. (1997), we have not
standardized the time series by dividing by site-specific standard deviations. We
believe that the assumption of constant spatial variance may not be adequate in
this example — as the spread of the sample variances (covariances at distance zero)
indicates in figure 8; a more thorough analysis of these data will have to account for
this aspect. The deformed map representing the posterior mean configuration (as
shown in figure 7) has the same features as the one in Meiring et al. (1997), figure 2:
the central region has been “stretched”, indicating a relatively low spatial covariance,
whereas the north-western region has been “shrunk”. The estimated exponential
covariance function superimposed on the plot of the sample covariances (in figure 8)
lies below the main cloud of points — we have checked through other simulations (the
results of which are not presented here) that this feature is not an indicator of poor
estimation, but rather a side-effect of the dependences among the sample covariances.

Posterior credibility intervals can be used to assess variability in the estimated
covariances, or any function of them. Figure 9 is an example: following figure 4
in Meiring et al. (1997), it depicts boxplots of the dispersions between site 45 and
other sites. The bootstrap method implemented in Meiring et al. (1997) for this pur-
pose is extremely computationally expensive, and requires additional, post-estimation
computations. Our boxplots are based on the same samples from the posterior distri-
bution that have been stored for obtaining the estimates. We note that the relative
positions of these boxplots are similar to the ones shown in Meiring et al. (1997),
figure 4. (There are scale differences due to the fact that in Meiring et al. (1997) the
series have been previously standardized). The number of empirical dispersions that
fall outside the interquartile ranges is comparable as well (6 in the present paper, 5
in Meiring et al. (1997)).



January 25, 2000 11

6 Discussion

We have introduced a method of estimating non-stationary semi-parametric covari-
ance structures within a Bayesian framework. The main advantage of this method is
the ease with which measures of variability of any quantity of interest can be obtained
through sampling from their posterior distributions. The isotropic correlation func-
tion applied to the D-plane, here assumed exponential, can be readily replaced with
other models (as described, for example in Matérn, (1986), chapter 2). Fully general
(nonparametric) isotropic correlation functions might also be considered, in principle,
although their computation and interpretation poses a number of challenges.

Due to the high dimensionality of the posterior distribution of the parameters
involved, we have obtained samples from this distribution through a Markov Chain
Monte Carlo algorithm. We intend to investigate further the specification of the
prior distribution on the D-plane — or, equivalently, the smoothness of the underlying
deformation representing nonstationarity — with a view to implementing it as a truly
informative and interpretable prior.

The statistical model used in this preliminary work incorporated two simplyfying
assumptions: constant spatial variance (v(z) = v) and no temporal trend (u(z,t) =
wu(z)). Both of these will be relaxed in future work. In addition, we will address the
interpolation of the spatially varying mean structure in order to provide a complete
Bayesian modeling and analysis framework for non-stationary spatio-temporal data.

Acknowledgments

The authors wish to thank Ruth Grossmann and Noam Shoresh for valuable help in
developing the code for the simulations, and Wendy Meiring and Pascal Monestiez
for providing the French precipitation data used in the Application section.

Although the research described in this article has been funded in part by the
United States Environmental Protection Agency through agreement CR825173-01-0
to the University of Washington, it has not been subjected to the Agency’s required
peer and policy review and therefore does not necessarily reflect the views of the
Agency and no official endorsement should be inferred.

References

[1] Bookstein, F.L. (1989): Principal warps: Thin-plate splines and the decomposi-
tion of deformations. I.E.E.E. Trans. Patt. Anal. Mach. Intell. 11, pp. 567-585.



January 25, 2000 12

2]

3]

[4]

[5]

[6]

[7]

8]
[9]

[10]

[11]

[12]

[13]

Bookstein, F.L. (1991): Morphometric Tools for Landmark Data, Cambridge
University Press.

Cressie, N.A.C. (1991): Statistics for Spatial Data, Wiley Series in Probability
and Mathematical Statistics.

Handcock, M.S. and Stein, M.L. (1993): A Bayesian Analysis of Kriging. Tech-
nometrics 35, No. 4, pp. 403-410.

Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B. (1996): Bayesian Data
Analysis, Chapman and Hall.

Le, N.D. and Zidek, J.V. (1992): Interpolation with Uncertain Spatial Covari-
ances: A Bayesian Alternative to Kriging. Journal of Multivariate Analysis 43,
No. 2, pp. 351-374.

Mardia, K.V., Kent, J.T., and Walder, A.N. (1991): Statistical shape models
in image analysis. Proceedings of the 23rd Symposium on the Interface between
Computing Science and Statistics, pp. 550-557. Interface Foundation, Fairfax
Station.

Matérn, B. (1986): Spatial Variation, Springer-Verlag.

Meiring, W., Monestiez, P., Sampson, P.D. and Guttorp, P. (1997): Devel-
opments in the Modeling of Nonstationary Spatial Covariance Structure from
Space-Time Monitoring Data. Geostatistics Wollongong 96, vol.1, pp. 162-173.
E.Y. Baafi and N. Schofield (eds.), Kluwer Academic Publishers.

Perrin, O. and Meiring, W. (1999): Identifiability for Non-Stationary Spatial
Structure. To appear in Applied Probability.

Sampson, P.D.; Lewis, P., Guttorp, P., Bookstein, F.L., and Hurley, C. (1991):
Computation and interpretation of deformations for landmark data in morpho-
metrics and environmetrics. In Proceedings of the 23rd Symposium on the Inter-
face between Computing Science and Statistics, pp. 534-541. Interface Founda-
tion, Fairfax Station.

Sampson, P.D., and Guttorp, P. (1992): Nonparametric estimation of nonsta-
tionary spatial covariance structure. J. Amer. Statist. Assoc. 87, pp 108-119.

Wikle, C.K., Berliner, L.M. and Cressie, N. (1998): Hierarchical Bayesian Space-
Time Models. Environmental and Ecological Statistics 5, pp. 117-154.



January 25, 2000

Initial Configuration

Deformed Configuration

13

Biorthogonal Grid

(=] o
R S 4
< <
o
8
<
2
N ,//
s s -
2 o « NI
N .
o 6 6 e pd
ISE e e
< A
A . RN
. e .
S o
/ . rd
8 o nd
4 e e .
o o ~
3 ,/ e
re . al :
2 .
o e
o < N . "
3 s e
e -
e o0
FN e -
v A
P e
S | . S | e s
R o
5
10
° 10
o4
&
5
o o
&1 g1
' ' — grad<0.5
- .5<grad<1
""" 1<grad<2
o —- grad>2
S |
N
-200 -100 0 100 200 -200 -100 0 100 200 -200 -100 0 100 200

Figure 1: The Affine Transformation of the 10 Sites and Its Biorthogonal Grid




January 25, 2000 14

(a) (b)
5 8
o
o
o |
o
g 3
23 g
[N
[92] N
© o 1 mwm .-—
0 200 400 600 800 1000 0.0024 0.0028 0.0032 0.0036
Iterations (in hundreds) theta
(c) (d)
o
O 1
- -
—
o |
[ee]
o Q|
- (o]
>
c
o |
for) <
o
. 1
[ee]
o‘ o ! e [ —
0 200 400 600 800 1000 090 09 100 105 110 115
Iterations (in hundreds) nu

Figure 2: Profile plots of theta and nu show a quick stabilization around the true
values ((a) and (c)) and histograms of the 500 samples from the respective posterior
distributions ((b) and (d)) are bell-shaped, centered close to the true values



January 25, 2000

Initial Configuration

Estimated Configuration

15

Estimated Biorthogonal Grid

400

200

-200

-400

Figure 3: Estimated Transformation and Its Biorthogonal Grid

o (=]

S A S

< <

o (=}

2 S 8 1
6
B
4
(=l 3 (=
3

o o

3 S |

Y o

P 1q
1
5

[=] [=]

§ &

! ! — grad<0.5
- .5<grad<1
""" 1<grad<2
—- grad>2

-200 -100 0 100 200 -200 -100 100 200 -200 -100 0 100 200




January 25, 2000 16

(@) (b) (c)

N N .
o] e o o |
. P p=i
© «© «©Q
o o o
@ @ @
5] o] 5]
2 = 2
8 8 8
3 © g © g ©
3 o g o] 3 o]
5] 3 S
< < <
o o o
~N o~ o~
o o o
0 100 200 300 400 0 100 200 300 400 500 600 0 100 200 300 400 500 600
Distance(km.) Distance(km.) Distance(km.)

Figure 4: Sample Covariances as a Function of Distances - (a) in the “G” plane, (b)
in the “D” plane, and (c) in the estimated “D” plane



January 25, 2000

(a)

o
o
™

— grad<0.5

.5<grad<1

""""" l<grad<2

—— grad>2
o
I
N
o
I
—

,/7'
. e
s
o 4 e
,/
e .
e
e
e
e
/,/
o .
$ ] ////
,/’
e
e

o
o
(\ll

-150 -100 -50 0 50

100 150 200

(b)

300

200

100

-100

- grad>2

rad<0.5
.5<grad<1
l<grad<2

-50 0 50

17

100 150 200

Figure 5: Assessing Uncertainty in the Transformation at Site 3: (a) true principal
axes; (b) estimated principal axes.



January 25, 2000 18

@) (b)

1.0
L1
1.0
L1

0.8
0.8
Bl

3
30
]
.
—
3

0.6
3
]
3
=
0.6
3
=
3l

INE i1
==
1
;
=
-
E
3
R | B
.
Bl
E
E
Bl
. 1
-
E
E
.

< o < W L _
© m : L =. © = I I o =
- ‘5 s ] i
: - :
N | 4 o~ | i
o B o
1 2 3 456 7 8 9101 1 1 2 3 456 7 8 91011

Figure 6: Estimated Covariances: (a) between site 3 and other locations; (b) between
location (0,0) and other locations. The numbers denote monitoring sites. I and II
denote locations (0,0) and (100,150), respectively. The dots represent the true values.



19

January 25, 2000

0000¢

00s6T

0006T

00S8T 0008T

00547

00047

yal
&&%,3 Fhe
SEREEES
il .I.:.g )
[s2] o Yo}
8, %7
g & g |&
™, -5 <
Q| ¥
(NP 10 NNP/O_M/ Loyt
s Sl
N ™
¢ | L
< ~
0000z  00S6T  0006T  00S8T  0008T  00SLT  000LT

5500 6000 6500 7000 7500 8000 8500

5500 6000 6500 7000 7500 8000 8500

Figure 7: Geographic and Deformed Maps of Languedoc-Roussillon.
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Figure 8: Sample Covariances as a Function of Distances in the “G” and estimated

“D” planes
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Figure 9: Posterior Dispersions between site 45 and other sites. The dots represent
the empirical values.



