2.1 Spatial covariances
Valid covariance functions

Bochner’s theorem: The class of covariance functions is the class of positive definite functions C:

$$\sum \sum a_i a_j C(s_i, s_j) \geq 0$$

Why?

$$\sum \sum a_i a_j C(s_i, s_j) = \text{Var}(\sum a_i Z(s_i))$$
Spectral representation

By the spectral representation any isotropic continuous correlation on \mathbb{R}^d is of the form

$$\rho(v) = E\left(e^{iu^T X}\right), \ v = \|u\|, X \in \mathbb{R}^d$$

By isotropy, the expectation depends only on the distribution G of $\|X\|$. Let Y be uniform on the unit sphere. Then

$$\rho(v) = Ee^{iv\|X\|Y} = E\Phi_Y(v\|X\|)$$
Isotropic correlation

\[\Phi_Y(u) = \left(\frac{2}{u} \right)^{d-1} \Gamma \left(\frac{d}{2} \right) J_{d-1}^2(u) \]

\(J_v(u) \) is a Bessel function of the first kind and order \(v \).

Hence

\[\rho(v) = \int_0^\infty \Phi_Y(sv) dG(s) \]

and in the case \(d=2 \)

\[\rho(v) = \int_0^\infty J_0(sv) dG(s) \quad \text{(Hankel transform)} \]
The Bessel function J_0
The exponential correlation

A commonly used correlation function is $\rho(v) = e^{-v/\phi}$. Corresponds to a Gaussian process with continuous but not differentiable sample paths.

More generally, $\rho(v) = c(v=0) + (1-c)e^{-v/\phi}$ has a *nugget* c, corresponding to measurement error and spatial correlation at small distances.

All isotropic correlations are a mixture of a nugget and a continuous isotropic correlation.
The squared exponential

Using \(G'(x) = \frac{2x}{\phi^2} e^{-4x^2/\phi^2} \) yields

\[
\rho(v) = e^{-(v/\phi)^2}
\]

corresponding to an underlying Gaussian field with analytic paths. This is sometimes called the Gaussian covariance, for no really good reason.

A generalization is the power(ed) exponential correlation function,

\[
\rho(v) = \exp\left(-\left[\frac{v}{\phi}\right]^{\kappa}\right), \quad 0 < \kappa \leq 2
\]
The spherical

\[\rho(v) = \begin{cases}
1 - 1.5v + 0.5\left(\frac{v}{\phi}\right)^3; & h < \phi \\
0, & \text{otherwise}
\end{cases} \]

Corresponding variogram

\[\tau^2 + \frac{\sigma^2}{2} \left(3 \frac{t}{\phi} + \left(\frac{t}{\phi}\right)^3\right); \quad 0 \leq t \leq \phi \]

\[\tau^2 + \sigma^2; \quad t > \phi \]
variograms with equivalent "practical range"
The Matérn class

\[G'(x) = \frac{2\kappa}{\phi^{2\kappa}} \frac{x}{(x^2 + \phi^{-2})^{1+\kappa}} \]

\[\rho(v) = \frac{1}{2^{\kappa-1} \Gamma(\kappa)} \left(\frac{v}{\phi} \right)^\kappa K_\kappa \left(\frac{v}{\phi} \right) \]

where \(K_\kappa \) is a modified Bessel function of the third kind and order \(\kappa \). It corresponds to a spatial field with \(\kappa-1 \) continuous derivatives.

\(\kappa=1/2 \) is exponential;

\(\kappa=1 \) is Whittle’s spatial correlation;

\(\kappa \to \infty \) yields squared exponential.
models with equivalent "practical" range
Some other covariance/variogram families

<table>
<thead>
<tr>
<th>Name</th>
<th>Covariance</th>
<th>Variogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wave</td>
<td>$\sigma^2 \frac{\sin(\phi t)}{\phi t}$</td>
<td>$\tau^2 + \sigma^2 (1 - \frac{\sin(\phi t)}{\phi t})$</td>
</tr>
<tr>
<td>Rational quadratic</td>
<td>$\sigma^2 (1 - \frac{t^2}{1 + \phi t^2})$</td>
<td>$\tau^2 + \frac{\sigma^2 t^2}{1 + \phi t^2}$</td>
</tr>
<tr>
<td>Linear</td>
<td>None</td>
<td>$\tau^2 + \sigma^2 t$</td>
</tr>
<tr>
<td>Power law</td>
<td>None</td>
<td>$\tau^2 + \sigma^2 t^\phi$</td>
</tr>
</tbody>
</table>
Estimation of variograms

Recall $\gamma(v) = \sigma^2 (1 - \rho(v))$

Method of moments: square of all pairwise differences, smoothed over lag bins

$$\bar{\gamma}(h) = \frac{1}{N(h)} \sum_{i,j \in N(h)} (Z(s_i) - Z(s_j))^2$$

$N(h) = \left\{ (i, j) : h - \frac{\Delta h}{2} \leq |s_i - s_j| \leq h + \frac{\Delta h}{2} \right\}$

Problems: Not necessarily a valid variogram
Not very robust
A robust empirical variogram estimator

$(Z(x)-Z(y))^2$ is chi-squared for Gaussian data

Fourth root is variance stabilizing

Cressie and Hawkins:

$$
\hat{\gamma}(h) = \frac{1}{|N(h)|} \sum \left| Z(s_i) - Z(s_j) \right|^{1/2} \right\}^4
0.457 + \frac{0.494}{|N(h)|}
$$
Least squares

Minimize

\[\theta \mapsto \sum_{i} \sum_{j} \left(\left[(Z(s_i) - Z(s_j))^2 - \gamma(s_i - s_j; \theta) \right] \right)^2 \]

Alternatives:
• fourth root transformation
• weighting by \(1/\gamma^2 \)
• generalized least squares
Maximum likelihood

\(Z \sim N_n(\mu, \Sigma) \quad \Sigma = \alpha [\rho(s_i-s_j; \theta)] = \alpha V(\theta) \)

Maximize

\[
\ell(\mu, \alpha, \theta) = -\frac{n}{2} \log(2\pi\alpha) - \frac{1}{2} \log \det V(\theta) \\
+ \frac{1}{2\alpha} (Z - \mu)^T V(\theta)^{-1} (Z - \mu)
\]

\(\hat{\mu} = 1^T Z / n \quad \hat{\alpha} = G(\hat{\theta}) / n \quad G(\theta) = (Z - \hat{\mu})^T V(\theta)^{-1} (Z - \hat{\mu}) \)

and \(\theta \) maximizes the profile likelihood

\[
\ell^* (\theta) = -\frac{n}{2} \log \frac{G^2(\theta)}{n} - \frac{1}{2} \log \det V(\theta)
\]
Parana data
A peculiar ml fit
Some more fits
All together now...
Bayesian kriging

Instead of estimating the parameters, we put a prior distribution on them, and update the distribution using the data.

Model: \((Z|\theta) \sim N(\beta, \sigma^2 C(\phi) + \tau^2 I)\)

Prior: \(f(\theta) = f(\beta)f(\sigma^2)f(\phi)f(\tau^2)\)

Posterior:

\[
f(\beta|Z = z) \propto f(\beta) \int \int \int f(z|\theta)f(\sigma^2)f(\phi)f(\tau^2)\,d\sigma^2\,d\phi\,d\tau^2
\]
Prior is assigned to ϕ and τ/σ. The latter assumed zero unless specified. The distributions are discretized. Default prior on mean β is flat (if not specified, assumed constant). (Lots of different assignments are possible)
Prior/posterior of ϕ
Variogram estimates

![Variogram estimates graph](Image)
Bayes vs universal kriging

Bayes predictive mean

Universal kriging
Spectral representation

Stationary processes

\[Z(s) = \int_{\mathbb{R}^d} \exp(\text{i} s^T \omega) dY(\omega) \]

Spectral process \(Y \) has stationary increments

\[\mathbb{E} |dY(\omega)|^2 = dF(\omega) \]

If \(F \) has a density \(f \), it is called the spectral density.

\[\text{Cov}(Z(s_1), Z(s_2)) = \int_{\mathbb{R}^2} e^{i(s_1 - s_2)^T \omega} f(\omega) d\omega \]
Estimating the spectrum

For process observed on nxn grid, estimate spectrum by *periodogram*

\[I_{n,n}(\omega) = \frac{1}{(2\pi n)^2} \left| \sum_{j \in J} z(j) e^{i\omega T_j} \right|^2 \]

\[\omega = \frac{2\pi j}{n} ; \ J = \left\{ \lfloor (n - 1) / 2 \rfloor, ..., n - \lfloor (n - 1) / 2 \rfloor \right\} \]

Equivalent to DFT of sample covariance
Properties of the periodogram

Periodogram values at Fourier frequencies \((j,k)\frac{\pi}{\Delta}\) are

- uncorrelated
- asymptotically unbiased
- not consistent

To get a consistent estimate of the spectrum, smooth over nearby frequencies
Some common isotropic spectra

Squared exponential

\[f(\omega) = \frac{\sigma^2}{2\pi\alpha} \exp\left(-\frac{\|\omega\|^2}{4\alpha}\right) \]
\[C(r) = \sigma^2 \exp\left(-\alpha \|r\|^2\right) \]

Matérn

\[f(\omega) = \phi(\alpha^2 + \|\omega\|^2)^{-\nu-1} \]
\[C(r) = \frac{\pi\phi(\alpha \|r\|)^\nu \mathcal{K}_\nu(\alpha \|r\|)}{2^{\nu-1} \Gamma(\nu + 1)\alpha^{2\nu}} \]
A simulated process

\[
Z(s) = \sum_{j=0}^{15} \sum_{k=-15}^{15} g_{jk} \cos \left(2\pi \left[\frac{js_1}{m} + \frac{ks_2}{n} \right] + U_{jk} \right)
\]

\[
g_{jk} = \exp(-|j + 6 - k \tan(20^\circ)|)
\]
Thetford canopy heights

39-year thinned commercial plantation of Scots pine in Thetford Forest, UK
Density 1000 trees/ha
36m x 120m area surveyed for crown height
Focus on 32 x 32 subset
Spectrum of canopy heights
Whittle likelihood

Approximation to Gaussian likelihood using periodogram:

\[\ell(\theta) = \sum_\omega \left\{ \log f(\omega; \theta) + \frac{I_{N,N}(\omega)}{f(\omega; \theta)} \right\} \]

where the sum is over Fourier frequencies, avoiding 0, and \(f \) is the spectral density.

Takes \(O(N \log N) \) operations to calculate instead of \(O(N^3) \).
Using non-gridded data

Consider
\[Y(x) = \Delta^{-2} \int h(x - s)Z(s)ds \]
where
\[h(x) = 1(\left| x_i \right| \leq \Delta / 2, \ i = 1,2) \]

Then \(Y \) is stationary with spectral density
\[f_Y(\omega) = \frac{1}{\Delta^2} |H(\omega)|^2 f_Z(\omega) \]

Viewing \(Y \) as a lattice process, it has spectral density
\[f_{\Delta,Y}(\omega) = \sum_{q \in \mathbb{Z}^2} \left| H(\omega + \frac{2\pi q}{\Delta}) \right|^2 f_Z(\omega + \frac{2\pi q}{\Delta}) \]
Estimation

Let $Y_{n^2}(x) = \frac{1}{n_x} \sum_{i \in J_x} h(s_i - x)Z(s_i)$

where J_x is the grid square with center x and n_x is the number of sites in the square. Define the tapered periodogram

$I_{g_1,Y_{n^2}}(\omega) = \frac{1}{\sum g_1^2(x)} \left| \sum g_1(x)Y_{n^2}(x)e^{-ix^T\omega} \right|^2$

where $g_1(x) = n_x / \bar{n}$. The Whittle likelihood is approximately

$\ell_Y = \frac{n^2}{(2\pi)^2} \sum_j \left\{ \log f_{\Delta,Y}(2\pi j / n) + \frac{I_{g_1,Y_{n^2}}(2\pi j / n)}{f_{\Delta,Y}(2\pi j / n)} \right\}$
A simulated example
Estimated variogram

ture
exact mle
approx mle
Thetford revisited

Features depend on spatial location

![Graph showing percentage of variation over matrix numbers](image)
Some references

(Reprinted in Springer Lecture Notes In Statistics, vol. 36)

Cressie: ch. 2.3.1, 2.4, 2.6.
